文章编号: 0258-7025(2008)Supplement2-0104-06

高功率固体激光装置紫外光学元件成丝损伤分析

周丽丹 胡东霞 粟敬钦 张小民

(中国工程物理研究院激光聚变研究中心,四川 绵阳 621900)

摘要 基于激光非线性传输和频率转换理论,研究了频率转换中基频光与三倍频光相位关系对光束近场带来的影响。结果表明,三倍频光近场对比度急剧增加对应的基频光 B 积分比频率转换前基频光近场对比度急剧增加对应的基频光 B 积分要小很多,在基频光 B 积分远小于 1.8 rad 时,三倍频近场也会成丝分裂。这对神光 III 原型装置 首束集成实验终端光学元件(FOA)出现的不寻常损伤作出了合理的解释。对实际工程中如何降低终端光学元件 的紫外损伤风险有重要的指导作用。

关键词 非线性光学;B积分;频率转换;光束质量

中图分类号 TN24 文献标识码 A doi: 10.3788/CJL200835s2.0104

Analysis of Filaments in UV Optics in High Power Solid-state laser system

Zhou Lidan Hu Dongxia Su Jingqin Zhang Xiaomin

(Research Center of Laser Fusion, Mianyang, Sichuan 621900, China)

Abstract Based on nonlinear propagation of laser and frequency conversion theory, the effects of the relationship between 1_{ω} phase and 3_{ω} phase on 3_{ω} near filed were studied. The results show that the B-integral corresponding to the sharp increase of 3_{ω} near field contrast was far less than that of 1_{ω} , even the B-integral of 1_{ω} is less than 1.8 rad, 3_{ω} near field occurs filament. This explained the unusual damage in final optics assembly (FOA) in prototype experiments of SGIII. The results plays an important role in reducing the risk of UV optics damage in FOA. **Key words** nonlinear optics; B-integral; frequency change; beam quality

1 引 言

小尺度自聚焦成丝是高功率固体激光装置中引起光学元件损伤的重要因素,极大地限制了系统输出能力的提高^[1~4]。研究表明,在光学系统级间 B 积分小于 1.8 rad 时,可避免小尺度自聚焦造成的 元件成丝破坏^[5.6]。

但是,神光Ⅲ原型装置首束集成实验发现,在系 统终端光学组件段的基频光、二倍频光和三倍频光 的 B 积分均远未达到 1.8 rad 的情况下,紫外光学 元件内却发生了小尺度自聚焦成丝破坏。这是一种 不常见的激光损伤现象。本文主要从激光传输与谐 波转换理论的角度,分析了损伤形成的机理,并通过 数值模拟,得到了与实验现象相一致的结果,对实验 现象作出了合理的物理解释。

2 实验现象

图1是神光III原型装置首束集成实验的系统光路, 图2是打靶透镜前的石英窗口出现的激光损伤图样,可 以明显看到有大量严重的自聚焦成丝破坏。表1为出现 图2所示损伤时激光器的运行参数。表2为此运行条件 下终端光学组件的B积分值,可见此时基频光、二倍频光 和三倍频光的B积分均远小于1.8 rad。

E-mail: xmzhang@lfcenter.ac.cn

基金项目:中国工程物理研究院科学技术发展基金(2007B08005)资助课题。

作者简介:周丽丹(1983-),女,硕士,主要从事高功率固体激光技术方面的研究。

E-mail: zhouldpku@gmail.com

导师简介:张小民(1955-),男,研究员,主要从事高功率固体激光技术与工程方面的研究。

图 1 原型装置首束集成实验的系统光路 Fig. 1 Optical configuration of TIL Facility

图 2 打靶透镜前的石英窗口出现的激光损伤图样 Fig. 2 Laser damage in fused silica window before target lens

表 1 出现损伤时的运行参数						
Table 1 Operation parameters when the damage appeared						
$1\omega \ energy \ / \ J$	1ω intensity	2	3ω intensity	2ω conversion	3ω conversion	
	$/ (GW/cm^2)$	5ω energy / J	/ (GW/cm ²)	efficiency	efficiency	
2020	2.69	1015	1.30	66 %	80%	

表	2	终端光常	学系统	В	积分	值
ĸ	2	-10/0-	エハシレ	D	1171	I

Table 2 B-integral of FOA

element / cm	Thickness	Nonlinear refractive index $\gamma / (10^{-7} \text{cm}^2/\text{GW})$		Average intensity I / (GW/cm ²)		B-intergral /rad				
	1ω	2ω	3ω	1ω	2ω	3ω	1ω	2ω	3ω	
L4	4	4.0	\	\	2.69	\	\	0.257	\	\
SM	4	4.0	\	\	2.62	\	\	0.250	\	\
SHG	1.1	2.3	3.5	\	1.60	0.72	\	0.024	0.033	\
THG	0.9	2.5	4.0	3.0	0.50	0.86	0.86	0.007	0.037	0.042
ΔB						0.538	0.070	0.042		

相关理论 3

由于介质存在非线性折射率,强激光在介质中 传输时强度分布的不均匀将引起介质折射率分布的 不均匀,从而使得激光相位的分布也不均匀。当这 种局部相位不均匀累积到一定程度时,将影响传输 激光的强度分布,出现局部能量的急剧集中,产生自 聚焦效应,甚至导致介质的成丝破坏^[7]。而 B 积分 的本质就是描述非线性效应引入的附加相位的累 积,是衡量强激光在介质中传输引起非线性效应强 弱的判据性参量^[3,5]。

对于终端组件的谐波转换过程,设 E_i (j = 1, 2, j) 3) 分别为基频光、倍频光和三倍频光的复振幅,其 数学表达式为[8]

$$E_{j}(x,y,z,t) = \frac{1}{2}A_{j}(x,y,z,t) \times \exp[-i(\omega_{j}t - k_{j}z)] + c.c, \qquad j = 1,2,3$$
(1)

I 类匹配的倍频稳态耦合波方程组为

$$\frac{\partial}{\partial z}A_{1} = -\frac{\mathrm{i}}{2k_{1}}\nabla_{\perp}^{2}A_{1} - \frac{1}{2}\alpha_{1}A_{1} + \frac{\mathrm{i}\omega_{1}\chi_{\mathrm{eff}}}{n_{o}(\omega)c}A_{2}A_{1}^{*}\exp(-\mathrm{i}\Delta kz) + \mathrm{i}\varepsilon_{0}n_{o}(\omega)\omega_{1}\left[\frac{\gamma_{11}}{2}\mid A_{1}\mid^{2}+\gamma_{12}\mid A_{2}\mid^{2}\right]A_{1},$$
(2a)

$$\frac{\partial}{\partial z}A_{2} = -\frac{\mathrm{i}}{2k_{2}}\nabla_{\perp}^{2}A_{2} - \rho_{2\omega}\frac{\partial A_{2}}{\partial r_{e}} - \frac{1}{2}\alpha_{2}A_{2} + \frac{\mathrm{i}\omega_{2}\chi_{\mathrm{eff}}}{2n_{e}(2\omega,\theta)c}A_{1}^{2}\exp(\mathrm{i}\Delta kz) + \mathrm{i}\varepsilon_{0}n_{e}(2\omega,\theta)\omega_{1}\left[\frac{\gamma_{22}}{2}\mid A_{2}\mid^{2}+\gamma_{21}\mid A_{1}\mid^{2}\right]A_{2}, \qquad (2b)$$

式中, k_j (j = 1, 2, 3)为波矢,定义为 $k_j = \frac{n_j \omega_j}{c}$, n_j 和 ω_j 分别为晶体折射率和光频率, α 为晶体中的线性吸收系数, χ_{eff} 是晶体的有效非线性折射率系数, γ_{ij} 则为非线性折射率系数。 $\Delta k = 2k_1 - k_2$ 为基频光和倍频光的波矢失配量。

II类三倍频的耦合波方程组为

$$\begin{aligned} \frac{\partial}{\partial z} A_{1} &= -\frac{i}{2k_{1}} \nabla_{\perp}^{2} A_{1} - \rho_{1} \frac{\partial A_{1}}{\partial r_{e}} - \frac{1}{2} \alpha_{1} A_{1} + \frac{i\omega_{1} \chi_{eff}}{n_{e}(\omega, \theta)c} A_{3} A_{2}^{*} \exp(-i\Delta kz) + \\ &i\varepsilon_{0} n_{e}(\omega, \theta) \omega_{1} \Big[\frac{\gamma_{11}}{2} \mid A_{1} \mid^{2} + \gamma_{12} \mid A_{2} \mid^{2} + \gamma_{13} \mid A_{3} \mid^{2} \Big] A_{1} , \end{aligned}$$
(3*a*)
$$\frac{\partial}{\partial z} A_{2} &= -\frac{i}{2k_{2}} \nabla_{\perp}^{2} A_{2} - \frac{1}{2} \alpha_{2} A_{2} + \frac{i\omega_{2} \chi_{eff}}{2n_{o}(2\omega)c} A_{3} A_{1}^{*} \exp(i\Delta kz) + \\ &i\varepsilon_{0} n_{o}(2\omega) \omega_{2} \Big[\frac{\gamma_{22}}{2} \mid A_{2} \mid^{2} + \gamma_{23} \mid A_{3} \mid^{2} + \gamma_{21} \mid A_{1} \mid^{2} \Big] A_{2} , \end{aligned}$$
(3*b*)
$$\frac{\partial}{\partial z} A_{3} &= -\frac{i}{2k_{3}} \nabla_{\perp}^{2} A_{3} - \rho_{3} \frac{\partial A_{3}}{\partial r_{e}} - \frac{1}{2} \alpha_{3} A_{3} + \frac{i\omega_{3} \chi_{eff}}{2n_{e}(3\omega, \theta)c} A_{1} A_{2} \exp(i\Delta kz) + \\ &i\varepsilon_{0} n_{e}(3\omega, \theta) \omega_{2} \Big[\frac{\gamma_{33}}{2} \mid A_{3} \mid^{2} + \gamma_{31} \mid A_{1} \mid^{2} + \gamma_{32} \mid A_{2} \mid^{2} \Big] A_{3} . \end{aligned}$$
(3*c*)

其参量定义与倍频过程类似,只是相位失配因子定 义为 $\Delta k = k_1 + k_2 - k_3$ 。

根据耦合波方程(2)(3)式(这里忽略了大于三 阶的高阶非线性效应)可以看出,在频率转换过程 中,对光场引入附加相位的物理过程有横向衍射、光 波耦合以及三阶非线性效应。横向衍射是线性过 程,光波耦合和三阶非线性效应是非线性过程。非 线性效应引入的相位附加量可以由 B 积分描述。 下面就主要从这两种非线性过程来考察附加相位的 累积对三倍频光近场造成的影响,从而对实验现象 给出物理解释。

根据耦合波方程,基频光存在振幅和相位畸变时,其畸变会相应的引入三倍频光中。二倍频晶体 (SHG)后表面,由光波耦合引起的基频光、二倍频 光的相位为^[9]

$$arphi_{1\omega,\mathrm{SHGout1}} = arphi_{1\omega,\mathrm{in}} + \Delta k_2 L_2 + \Delta k_2 \int_0^{L_2} \eta_2(z) \mathrm{d}z,$$

$$(4a)$$

$$\varphi_{2\omega,\mathrm{SHGout1}} = 2\varphi_{1\omega,\mathrm{in}} + \frac{1}{2}\Delta k_2 L_2,$$
(4b)

式中, $\varphi_{l\omega,in}$ 为二倍频晶体前表面入射基频光初始相 位, Δk_2 、 L_2 分别为倍频过程中的相位失配因子和 倍频晶体长度, $\eta_2(z)$ 为倍频转换效率随倍频晶体 长度变化的函数。 三阶非线性效应引起的附加相位可以转化为 B 积分的形式表达

$$\varphi_{1_{\omega}, \text{SHGout2}} = \delta B_{1_{\omega} \text{SHG}} + \delta B_{2_{\omega} \text{SHG}}, \qquad (5a)$$

$$D_{2\omega, \text{SHGout2}} = \delta B_{2\omega \text{SHG}} + 4 \delta B_{1\omega \text{SHG}}, \qquad (5b)$$

式中, δB_{1ωSHG} 为基频光经过倍频晶体的附加相位, δB_{2ωSHG} 为二倍频光经过倍频晶体的附加相位。

则,二倍频晶体后表面出射处的基频光、二倍频 光的相位为

$$\varphi_{1\omega,SHGout} = \varphi_{1\omega,SHGout1} + \varphi_{1\omega,SHGout2},$$
 (6*a*)

$$\varphi_{2_{\omega}, \text{SHGout}} = \varphi_{2_{\omega}, \text{SHGout1}} + \varphi_{2_{\omega}, \text{SHGout2}}, \quad (6b)$$

同理,混频晶体(THG)后表面出射的三倍频光 相位为

光波耦合过程

$$\varphi_{3\omega,\text{out1}} = \varphi_{1\omega,\text{THGin}} + \varphi_{2\omega,\text{THGin}} + \frac{1}{2}\Delta k_3 L_3 =$$

$$\varphi_{1\omega,\text{SHGout}} + \varphi_{2\omega,\text{SHGout}} + \frac{1}{2}\Delta k_3 L_3 =$$

$$3\varphi_{1\omega,\text{in}} + \frac{3}{2}\Delta k_2 L_2 + \frac{1}{2}\Delta k_3 L_3 +$$

$$\Delta k_2 \int_{0}^{L_2} \eta_2(z) dz + 5\delta B_{1\omega\text{SHG}} + 2\delta B_{2\omega\text{SHG}}, \quad (7)$$

三阶非线性过程:

 $\varphi_{3\omega,out2} = \delta B_{3\omega THG} + 6 \delta B_{1\omega THG} + 3 \delta B_{2\omega THG}$ (8) 式中, Δk_3 , L_3 分别为混频过程中的相位失配因子 和混频晶体长度, $\delta B_{1\omega,THG}$ 为基频光经过混频晶体 的附加相位, B_{2ω,THG} 为二倍频光经过混频晶体的附加相位, δB_{3ω,THG} 为三倍频光经过混频晶体的附加相位。

则频率转换完成后混频晶体后表面的三倍频光 相位为

$$arphi_{3\omega,\mathrm{out}} = arphi_{3\omega,\mathrm{out}1} + arphi_{3\omega,\mathrm{out}2} = \left[3arphi_{1\omega,\mathrm{in}} + rac{3}{2}\Delta k_2 L_2 + rac{1}{2}\Delta k_3 L_3 + \Delta k_2 \int_0^{L_2} \eta_2(z) \mathrm{d}z
ight] + \left[5\Delta B_{1\omega(\mathrm{S+H})} +
ight]$$

 $2\Delta B_{2\omega(S+H)} + \delta B_{1\omega THG} + \delta B_{2\omega THG} + \delta B_{3\omega THG}$],(9) 式中, $\Delta B_{1\omega(S+H)}$, $\Delta B_{2\omega(S+H)}$ 为由倍频晶体和混频晶 体共同引起的基频光、二倍频光的附加相位。第一 个括号为耦合项,第二个括号为三阶非线性项。

对于耦合项,根据微扰理论^[9],在三倍频转换效 率峰值附近又有

$$3\varphi_{1_{\omega},\text{in}} + \frac{3}{2}\Delta k_2 L_2 + \frac{1}{2}\Delta k_3 L_3 + \Delta k_2 \int_0^{L_2} \eta_2(z) dz \approx 3\varphi_{1_{\omega},\text{in}} \, , \qquad (10)$$

当系统运行在三倍频转换效率峰值附近时,由(8)式 可得到简化的三倍频光附加相位畸变为

$$\varphi_{3\omega,\text{out}} = 3\varphi_{1\omega,\text{in}} + 5\Delta B_{1\omega(S+H)} + 2\Delta B_{2\omega(S+H)} + \delta B_{1\omega\text{THG}} + \delta B_{2\omega\text{THG}} + \delta B_{3\omega\text{THG}}, \qquad (11)$$

已知在传输过程中,相位、振幅调制会相互转化^[10], 那么以3倍关系转化到三倍频相位的基频光相位畸 变对近场调制的影响就非常明显了,这将对光学元 件造成极大的威胁。同时紫外元件的损伤阈值本身 比基频段元件的阈值小,因此紫外元件就极易产生 成丝损伤。

在高功率激光系统中,最后一级空间滤波器与 频率转换晶体之间还有厚度较大的非线性光学元 件,如滤波器透镜、窗口玻璃等,它们的非线性效应 对基频光引入的附加相位由此段基频光的 B 积分 描述并体现在 φ_{1α,in} 中,基于上述的理论分析,在考 虑频率转换前基频光段的 B 积分时就应该以比 1.8 rad更加严格的值为判定标准。

4 数值模拟

为了描述光束近场的质量,采用反映光束空间 强度分布统计性质的特征量——光束近场对比度 C (contrast)作为评价因子,对比度C的大小表征近场 强度分布的均匀性以及空间高频调制份额的多 少^[5]。根据 B-T 理论^[11],中高频调制的增长与 B 积 分是成指数增长,因此输出近场对比度 C 随 B 积分 的增加也出现指数增长趋势。B积分较小时,非线 性作用不会使光束的近场强度发生较大的变化;当 B积分值达到一定程度时,近场对比度随 B积分的 增加将迅速增长,这个增长速率加快的点就将成为 激光系统安全运行的限制点[5,6]。又由于频率转化 晶体的厚度很小,其内部各频率光的强度相对未转 换前的基频光来说比较小,由频率转换晶体引起的 非线性效应相对就很小,见表 2。因此,这里只考察 频率转换前基频光段的B积分与倍频晶体前表面 基频光的近场对比度、混频晶体后表面三倍频光近 场对比度、以及再自由传输一段距离的三倍频光的 近场对比度的关系。实验中产生损伤的石英玻璃与 THG 晶体的距离为 2 m, 光束为 28 cm 口径的方光 束,模拟中将采用2 cm 口径的方光束,则由等效菲 涅耳数可得到模拟应采用的自由传输距离为 1.02 cm.

模拟采用的物理模型:对具有随机振幅调制和 低频相位调制的初始输入场,先后通过一定厚度的 非线性介质(相当于实际中的真空窗口、滤波透镜 等)、倍频晶体、混频晶体以及一段真空自由传输。 基频光 B 积分的改变可以通过改变初始光强实现。 表 3 是模拟采用的参数。

表 3 模拟参数

Table 3	parameters	of	simul	ation
---------	------------	----	-------	-------

Sampling	Beam	Sampling	Length of nonlinear	Initial contrast	Distance of vacuum
size /cm	size/cm	counts	medium /cm	of 1w	propagation /cm
4	2	$512\!\times\!512$	20	0.15	1.02

图 3 是三个位置的近场对比度与频率转换前的 基频光 B 积分的关系。可以看到混频晶体后表面 的三倍频光近场对比度比倍频晶体前表面基频光的 近场对比度要大,说明频率转换过程会使光束近场 变坏,调制加剧;混频晶体后表面的三倍频光和自由 传输后的三倍频光近场对比度快速增长对应的 B 积分都比倍频晶体前表面基频光近场对比度快速增 长对应的 B 积分要小得多。当 B = 0.5 rad 时三倍 频近场对比度增长速度就开始加快, B = 1.1 rad 附 近时增长速度急剧上升,说明近场严重变坏。而基

光

频光近场对比度在 B = 1.7 rad 附近才快速增加。 因此,对于远小于 1.7 rad 的基频光 B 积分值,其转 换的三倍频光的近场也会产生严重的调制以致分 裂,与理论结果相符。

图 4 为自由传输后的近场随传输距离的变化, 可见随着距离的增加,近场对比度先略减小然后增加,说明在后续传播中,相位、振幅畸变会相互转化。 传输距离越长,近场对比度快速增加对应的 B 积分 就越小,近场就越容易变坏。

图 3 近场对比度与频率转换前的基频光 B 积分的关系

Fig. 3 Relationship between contrast of near field and B-integral of 1ω before frequency conversion

图 5 是倍频晶体前表面基频光近场与混频晶体后表面三倍频光近场以及自由传输后近场的对比,此时 B =1.49 rad。可以看到,虽然此时的基频光近场比较均匀,对比度只有 0.2(图 5(a)),但是混频晶体后表面的三倍频近场对比度已经达到了 0.46(图 5(b)),自由传输后的近场也达到了 0.43(图 5(c)),近场调制非常厉害。图 3 图 4 也可以看到,当自由传输距离增加时,近场对比度会更大,后续的光学元件产生成丝损伤的风险也更大,在实际工程中,大量的灰尘、杂质等中高频调制不可避免,调制将更加厉害;同时,紫外元件的损伤阈值本身就比基频段

元件的阈值小,因此就出现了异常损伤现象。特别 是当后续光路中存在厚度较大的非线性元件时,进 一步的非线性效应将引起更加严重的近场调制,从 而对元件造成严重的成丝损伤。

- 图 5 B=1.49 rad 时三个位置处的近场的对比.(a) SHG 晶体前表面的基频光近场, C=0.2;(b) THG 晶体 后表面的三倍频光近场, C=0.46;(c) 自由传输后 的三倍频光近场, C=0.43
- Fig. 5 Comparison of near field at three planes with B= 1. 49 rad. (a) 1ω near-field at front surface of SHG, C =0. 2; (b) 3ω near-field at rear surface of THG, C =0. 46; (c) 3ω near-field after vacuum propagation, C =0, 43

因此为了系统的安全运行,在目前的初始基频 光光束质量下,终端光学组件段就不能采用以往的 B积分判据 $\Delta B \leq 1.8$ rad,而应该采用更加严格的 判据值,尽量减小频率转换前的基频光的 B 积分。 可以采用减小真空窗口的厚度,最后一级空间滤波 器和倍频晶体间除了真空窗口外应尽量不再引入其 他非线性光学元件等措施,同时,终端光学组件各元 件的厚度也应尽可能小。

5 结 论

理论分析及模拟结果表明,谐波转换之前的基 频光传输过程中由非线性效应引起的相位起伏量将 按照3倍的关系转换到三倍频光相位中,那么即使 基频段 B 积分值很小,在后续的传输中由于相位、 振幅畸变的相互转换,同样会引起近场的分裂,导致 元件成丝损伤。这对神光 III 原型装置首束集成实 验中出现的终端光学元件不寻常的损伤作出了合理 的解释。

基于此理论,在实际工程中,为了系统的安全运行,在严格控制光路洁净环境的同时还要采取措施 尽量减少基频光的 B 积分。文章结果对实际工程 中如何降低终端光学元件的紫外损伤风险有重要的 指导作用。

参考文献

- 1 J. Murray, R. Sacks , J. Auerbach *et al* .. Laser requirements and performance[R] UCRL-LR-105821-97-3
- 2 W. H. Williams, P. A. Renard, K. R. Manes *et al.*. Modeling of self-focusing experiments by beam propagation codes [R]. UCRL-LR-105821-96-1

- 3 J. A. Fleck, J. R. Morris, E. S. Bliss. Small-scale self-focusing effects in a high power glass laser amplifier [J]. *IEEE J. Q. E.*, 1978, **QE14**(5):353~363
- 4 A. J. Campillo, S. L. Shapiro, B. R. Suydam. Periodic breakup of optical beams due to self-focusing[J]. *Appl. Phys. Lett.*, 1973, 23: 628~630
- 5 Jing Feng, Zhang Xiaomin, Zhu Qihua et al.. Study on characteristics of intense beam propagation in Nd³⁺ doped glass media[J]. HIigh Power Laser and particle beams, 2001,12 (5):551~555
 景 峰,张小民,朱启华等. 钕玻璃介质中强激光束传输特性初

步研究[J]. 强激光与粒子束,2000,12(5):551~555

6 Peng Zhitao, Jing Feng, Liu Lanqin *et al.*. Power spectra density estimation of quality of the laser beam passing through an self-focusing media [J]. Acta Physica. Sinica., 2003, 52 (1):87~90

彭志涛,景 峰,刘兰琴 等. 自聚焦激光束光束质量评价的功 率谱密度方法[J]. 物理学报,2003,**52**(1):87~90

- 7 Wen Shuangchun, Fan Dianyuan. Filamentation of intense laser beam in high power laser and the B integral[J]. Acta Optica Sinica, 2001,21(11):1331~1335
 文双春,范滇元.高功率激光放大器中光束的成丝和 B 积分[J]. 光学学报,2001,21(11):1331~1335
- 8 D. Eimerl, J. M. Auerbach *et al.*. Paraxial wave theory of second and third harmonic generation in uniaxial crystals. I. Narrowband pump fields [J]. J. Mod. Opt., 1995, 42 (5): 1037~1067
- 9 Jerome M. Auerbach, David Eimerl, David Milam et al... Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling [J]. Appl. Opt., 1997,36(3):606~612
- 10 Michael Bray. Using first principles in the specifying of optics for large high-power laser (I): application to the MégaJoule Laser (LMJ). SPIE, 1996, 2775-33
- V. I. Bespalov, V. I. Talanov, Filamentary structure of light beams in nonlinear liquids[J]. JETP Lett., 1966, 3(12):307 ~310